Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.434
Filtrar
1.
mBio ; 15(4): e0348323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511930

RESUMO

Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.


Assuntos
Proteínas de Membrana , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Proteínas de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Tripsina/metabolismo , Biofilmes , Infecções Estafilocócicas/metabolismo
2.
J Proteome Res ; 23(4): 1360-1369, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457694

RESUMO

Trypsin is the gold-standard protease in bottom-up proteomics, but many sequence stretches of the proteome are inaccessible to trypsin and standard LC-MS approaches. Thus, multienzyme strategies are used to maximize sequence coverage in post-translational modification profiling. We present fast and robust SP3- and STRAP-based protocols for the broad-specificity proteases subtilisin, proteinase K, and thermolysin. All three enzymes are remarkably fast, producing near-complete digests in 1-5 min, and cost 200-1000× less than proteomics-grade trypsin. Using FragPipe resolved a major challenge by drastically reducing the duration of the required "unspecific" searches. In-depth analyses of proteinase K, subtilisin, and thermolysin Jurkat digests identified 7374, 8178, and 8753 unique proteins with average sequence coverages of 21, 29, and 37%, including 10,000s of amino acids not reported in PeptideAtlas' >2400 experiments. While we could not identify distinct cleavage patterns, machine learning could distinguish true protease products from random cleavages, potentially enabling the prediction of cleavage products. Finally, proteinase K, subtilisin, and thermolysin enabled label-free quantitation of 3111, 3659, and 4196 unique Jurkat proteins, which in our hands is comparable to trypsin. Our data demonstrate that broad-specificity proteases enable quantitative proteomics of uncharted areas of the proteome. Their fast kinetics may allow "on-the-fly" digestion of samples in the future.


Assuntos
Peptídeo Hidrolases , Proteômica , Peptídeo Hidrolases/metabolismo , Tripsina/metabolismo , Proteoma/análise , Endopeptidase K , Termolisina , Subtilisinas
3.
J Pharm Biomed Anal ; 243: 116094, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479303

RESUMO

BACKGROUND: Tandem mass spectrometry (MS/MS) can provide direct and accurate sequence characterization of synthetic peptide drugs, and peptide drug products including side chain modifications in the Peptide drugs. This article explains a step-by-step guide to developing a high-throughput method using high resolution mass spectrometry for characterization of Calcitonin Salmon injection containing high proportion of UV-active excipients. METHODS: The major challenge in the method development of Amino acid sequencing and Peptide mapping was presence of phenol in drug product. Phenol is a UV-active excipient and reacts with both Dithiothreitol (DTT) and Trypsin. Hence Calcitonin Salmon was extracted from the Calcitonin Salmon injection using solid phase extraction after the extraction, Amino acid sequencing and peptide mapping study was performed. Upon incubation of Calcitonin Salmon with Trypsin and DTT, digested fragments were generated which were separated by mass compatible reverse phase chromatography and the molecular mass of each fragment was determined using HRMS. RESULTS: A reverse phase chromatographic method was developed using UHPLC-HRMS for the determination of direct mass, peptide mapping and to determine the amino acid sequencing in the Calcitonin Salmon injection. The method was found Specific and fragments after trypsin digest are well resolved from each other and the molecular mass of each fragment was determined using HRMS. Sequencing was performed using automated identification of b and y ions annotation and identifications based on MS/MS spectra using Biopharma finder and Proteome discoverer software. CONCLUSION: Using this approach 100% protein coverage was obtained and protein was identified as Calcitonin Salmon and the observed masses of tryptic digest of peptide was found similar with theoretical masses. The method can be used for both UV and MS based Peptide mapping and whereas the UV based peptide mapping method can be used as identification test for Calcitonin Salmon drug substance and drug product in quality control.


Assuntos
Calcitonina , Peptídeos , Espectrometria de Massas em Tandem , Mapeamento de Peptídeos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Tripsina/metabolismo , Análise de Sequência de Proteína , Proteoma , Fenóis
4.
Int J Biol Macromol ; 263(Pt 2): 130244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387638

RESUMO

Oxidative stress disorders and diseases caused by drug-resistant bacteria have emerged as significant public health concerns. Plant-based medications like protease inhibitors are growing despite adverse effects therapies. Consecutively, in this study, trypsin inhibitors from Dioscorea bulbifera L. (DbGTi trypsin inhibitor) ground tubers were isolated, purified, characterized, and evaluated for their potential cytotoxicity, antibacterial, and antioxidant activities. DbGTi protein was purified by Q-Sepharose matrix, followed by trypsin inhibitory activity. The molecular weight of the DbGTi protein was found to be approximately 31 kDa by SDS-PAGE electrophoresis. The secondary structure analysis by circular dichroism (CD) spectroscopy revealed that the DbGTi protein predominantly comprises ß sheets followed by α helix. DbGTi protein showed competitive type of inhibition with Vmax = 2.1372 × 10-1 µM/min, Km = 1.1805 × 102 µM, & Ki = 8.4 × 10-9 M and was stable up to 70 °C. DbGTi protein exhibited 58 % similarity with Dioscorin protein isolated from Dioscorea alata L. as revealed by LC-MS/MS analysis. DbGTi protein showed a non-toxic effect, analyzed by MTT, Haemolytic assay and in vivo studies on zebrafish model. DbGTi protein significantly inhibited K. pneumoniae and has excellent antioxidant properties, confirmed by various antioxidant assays. The results of anti-microbial, cytotoxicity and antioxidant assays demonstrate its bioactive potential and non-toxic nature.


Assuntos
Antioxidantes , Dioscorea , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Inibidores da Tripsina/farmacologia , Peixe-Zebra , Dioscorea/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Tripsina/metabolismo
5.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397107

RESUMO

Predicting the potency of inhibitors is key to in silico screening of promising synthetic or natural compounds. Here we describe a predictive workflow that provides calculated inhibitory values, which concord well with empirical data. Calculations of the free interaction energy ΔG with the YASARA plugin FoldX were used to derive inhibition constants Ki from PDB coordinates of protease-inhibitor complexes. At the same time, corresponding KD values were obtained from the PRODIGY server. These results correlated well with the experimental values, particularly for serine proteases. In addition, analyses were performed for inhibitory complexes of cysteine and aspartic proteases, as well as of metalloproteases, whereby the PRODIGY data appeared to be more consistent. Based on our analyses, we calculated theoretical Ki values for trypsin with sunflower trypsin inhibitor (SFTI-1) variants, which yielded the more rigid Pro14 variant, with probably higher potency than the wild-type inhibitor. Moreover, a hirudin variant with an Arg1 and Trp3 is a promising basis for novel thrombin inhibitors with high potency. Further examples from antibody interaction and a cancer-related effector-receptor system demonstrate that our approach is applicable to protein interaction studies beyond the protease field.


Assuntos
Helianthus , Serina Endopeptidases , Inibidores da Tripsina/farmacologia , Tripsina/metabolismo , Helianthus/metabolismo , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia
6.
FEBS J ; 291(8): 1732-1743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273457

RESUMO

Amyloid fibrils of transthyretin (TTR) consist of full-length TTR and C-terminal fragments starting near residue 50. However, the molecular mechanism underlying the production of the C-terminal fragment remains unclear. Here, we investigated trypsin-induced aggregation and urea-induced unfolding of TTR variants associated with hereditary amyloidosis. Trypsin strongly induced aggregation of variants V30G and V30A, in each of which Val30 in the hydrophobic core of the monomer was mutated to less-bulky amino acids. Variants V30L and V30M, in each of which Val30 was mutated to bulky amino acids, also exhibited trypsin-induced aggregation. On the other hand, pathogenic variant I68L as well as the nonpathogenic V30I did not exhibit trypsin-induced aggregation. The V30G variant was extremely unstable compared with the other variants. The V30G mutation caused the formation of a cavity and the rearrangement of Leu55 in the hydrophobic core of the monomer. These results suggest that highly destabilized transthyretin variants are more susceptible to trypsin digestion.


Assuntos
Amiloidose Familiar , Valina , Humanos , Tripsina/genética , Tripsina/metabolismo , Valina/genética , Pré-Albumina/química , Amiloide/química , Amiloidose Familiar/genética
7.
PLoS Negl Trop Dis ; 18(1): e0011874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166153

RESUMO

BACKGROUND: Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING: TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS: TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.


Assuntos
Receptor PAR-2 , Trichinella spiralis , Triquinelose , Animais , Humanos , Camundongos , Células CACO-2 , Epitélio/metabolismo , Proteínas de Helminto/metabolismo , Larva/fisiologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Proteínas Quinases , Trichinella spiralis/metabolismo , Trichinella spiralis/patogenicidade , Triquinelose/genética , Triquinelose/metabolismo , Tripsina/metabolismo , Receptor PAR-2/metabolismo
8.
Int J Biol Macromol ; 259(Pt 1): 129222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185307

RESUMO

The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC50 value of 1.13 ± 0.0047 and 1.086 ± 0.0131 µM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.


Assuntos
Curcumina , Diosmina , Simulação de Acoplamento Molecular , Pepsina A/metabolismo , Tripsina/metabolismo , Curcumina/farmacologia , Cinética , Polifenóis/farmacologia , Flavonoides/farmacologia , Flavonoides/química , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
9.
J Am Soc Mass Spectrom ; 35(2): 386-396, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38287222

RESUMO

To improve the coverage in bottom-up proteomics, S-aminoethylation of cysteine residues (AE-Cys) was carried out with 2-bromoethylamine, followed by cleavage with lysyl endopeptidase (Lys-C) or Lys-C/trypsin. A model study with bovine serum albumin showed that the C-terminal side of AE-Cys was successfully cleaved by Lys-C. The frequency of side reactions at amino acids other than Cys was less than that in the case of carbamidomethylation of Cys with iodoacetamide. Proteomic analysis of A549 cell extracts in the data-dependent acquisition mode after AE-Cys modification afforded a greater number of identified protein groups, especially membrane proteins. In addition, label-free quantification of proteins in mouse nonsmall cell lung cancer (NSCLC) tissue in the data-independent acquisition mode after AE-Cys modification showed improved NSCLC pathway coverage and greater reproducibility. Furthermore, the AE-Cys method could identify an epidermal growth factor receptor peptide containing the T790 M mutation site, a well-established lung-cancer-related mutation site that has evaded conventional bottom-up methods. Finally, AE-Cys was found to fully mimic Lys in terms of collision-induced dissociation fragmentation, ion mobility separation, and cleavage by Lys-C/trypsin, except for sulfoxide formation during sample preparation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Sequência de Aminoácidos , Cisteína/química , Proteínas de Membrana , Proteômica/métodos , Reprodutibilidade dos Testes , Tripsina/metabolismo , Alquilação
10.
J Agric Food Chem ; 72(4): 2263-2276, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235648

RESUMO

Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.


Assuntos
Bacillus thuringiensis , Inseticidas , MicroRNAs , Mariposas , Animais , Mariposas/genética , Mariposas/metabolismo , Larva/genética , Larva/metabolismo , Tripsina/genética , Tripsina/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Bacillus thuringiensis/química , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência a Inseticidas/genética
11.
Nat Chem ; 16(4): 592-598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238467

RESUMO

The development of mirror-image biology systems and related applications is hindered by the lack of effective methods to sequence mirror-image (D-) proteins. Although natural-chirality (L-) proteins can be sequenced by bottom-up liquid chromatography-tandem mass spectrometry (LC-MS/MS), the sequencing of long D-peptides and D-proteins with the same strategy requires digestion by a site-specific D-protease before mass analysis. Here we apply solid-phase peptide synthesis and native chemical ligation to chemically synthesize a mirror-image version of trypsin, a widely used protease for site-specific protein digestion. Using mirror-image trypsin digestion and LC-MS/MS, we sequence a mirror-image large subunit ribosomal protein (L25) and a mirror-image Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), and distinguish between different mutants of D-Dpo4. We also perform writing and reading of digital information in a long D-peptide of 50 amino acids. Thus, mirror-image trypsin digestion in conjunction with LC-MS/MS may facilitate practical applications of D-peptides and D-proteins as potential therapeutic and informational tools.


Assuntos
Proteínas , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Tripsina/química , Tripsina/metabolismo , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Digestão
12.
Poult Sci ; 103(1): 103182, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931399

RESUMO

Chicken diet essentially relies on soybean as the major source of proteins but there are increasing efforts to identify other protein-rich feedstuffs. Of these, some pea cultivars constitute interesting sources of proteins, although some of them contain antinutritional factors that may compromise the digestibility of their protein content. Consequently, chickens exhibit low performance, while undigested compounds rejected in feces have a negative environmental impact. In this article, we analyzed the intestinal content of chickens fed a pea diet (Pisum sativum) to decipher the mechanisms that could explain such a low digestibility. Using gelatin zymography, we observed that the contents of chicken fed the pea diet exhibit altered proteolytic activities compared with intestinal contents from chickens fed a rapeseed, corn, or soybean diet. This pea-specific profile parallels the presence of a 34 kDa protein band that resists proteolysis during the digestion process. Using mass spectrometry analysis, we demonstrated that this band contains the pea-derived Bowman-Birk protease inhibitor (BBI) and 3 chicken proteases, the well-known chymotrypsinogen 2-like (CTRB2) and trypsin II-P39 (PRSS2), and the yet uncharacterized trypsin I-P38 (PRSS3). All 3 proteases are assumed to be protease targets of BBI. Molecular modeling of the interaction of pea BBI with PRSS2 and PRSS3 trypsins reveals that electrostatic features of PRSS3 may favor the formation of a BBI-PRSS3 complex at physiological pH. We hypothesize that PRSS3 is specifically expressed and secreted in the intestinal lumen to form a complex with BBI, thereby limiting its inhibitory effects on PRSS2 and chymotrypsinogen 2-like proteases. These data clearly demonstrate that in chickens, feedstuff containing active pea BBI affects intestinal proteolytic activities. Further studies on the effects of BBI on the expression of PRSS3 by digestive segments will be useful to better appreciate the impact of pea on intestine physiology and function. From these results, we suggest that PRSS3 protease may represent an interesting biomarker of digestive disorders in chickens, similar to human PRSS3 that has been associated with gut pathologies.


Assuntos
Inibidor da Tripsina de Soja de Bowman-Birk , Humanos , Animais , Tripsina/metabolismo , Galinhas/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/química , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/farmacologia , Proteólise , Quimotripsinogênio/metabolismo , Peptídeo Hidrolases/metabolismo , Tripsinogênio/metabolismo
13.
Curr Protein Pept Sci ; 25(2): 172-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37694793

RESUMO

INTRODUCTION: Trypsin inhibitors (TIs) have the ability to competitively or non-competitively bind to trypsin and inhibit its action. These inhibitors are commonly found in plants and are used in protease inhibition studies involved in biochemical pathways of pharmacological interest. OBJECTIVES: This work aimed to purify a trypsin inhibitor from Bauhinia pulchella seeds (BpuTI), describing its kinetic mechanism and anticoagulant effect. METHODS: Affinity chromatography, protein assay, and SDS-PAGE were used to purify the inhibitor. Mass spectrometry, inhibition assays, and enzyme kinetics were used to characterize the inhibitor. In vitro assays were performed to verify its ability to prolong blood clotting time. RESULTS: Affinity chromatography on a Trypsin-Sepharose 4B column gave a yield of 43.1. BpuTI has an apparent molecular mass of 20 kDa with glycosylation (1.15%). Protein identification was determined by MS/MS, and BpuTI showed similarity to several Kunitz-type trypsin inhibitors. BpuTI inhibited bovine trypsin as an uncompetitive inhibitor with IC50 (3 x 10-6 M) and Ki (1.05 x 10-6 M). Additionally, BpuTI showed high stability to temperature and pH variations, maintaining its activity up to 100ºC and in extreme pH ranges. However, the inhibitor was susceptible to reducing agents, such as DTT, which completely abolished its activity. BpuTI showed an anticoagulant effect in vitro at a concentration of 33 µM, prolonging clotting time by 2.6 times. CONCLUSION: Our results suggest that BpuTI can be a biological tool to be used in blood clotting studies.


Assuntos
Bauhinia , Inibidores da Tripsina , Animais , Bovinos , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Bauhinia/metabolismo , Tripsina/análise , Tripsina/química , Tripsina/metabolismo , Espectrometria de Massas em Tandem , Sementes/química , Anticoagulantes/farmacologia , Anticoagulantes/análise , Anticoagulantes/química
14.
Int J Biol Macromol ; 254(Pt 3): 127382, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37838138

RESUMO

This study aimed to enhance the expression level of a novel trypsin gene from Streptomyces fradiae ATCC14544 in Komagataella phaffii GS115 through the combinational use of propeptide engineering and self-degradation residues modification strategies. An artificial propeptide consisted of thioredoxin TrxA, the bovine propeptide DDDDK and the hydrophobic peptide FVEF was introduced to replace the original propeptide while the self-degradation residue sites were predicted and analyzed through alanine screening. The results showed that the quantity and enzymatic activity of asft with engineered propeptide reached 47.02 mg/mL and 33.9 U/mL, which were 9.6 % and 59.29 % higher than those of wild-type (42.9 mg/mL and 13.8 U/mL). Moreover, the introduction of R295A/R315A mutation further enhanced the enzymatic activity (58.86 U/mL) and obviously alleviated the phenomena of self-degradation. The tolerance of trypsin towards alkaline environment was also improved since the optimal pH was shifted from pH 9.0 to pH 9.5 and the half-life value at pH 10 was significantly extended. Finally, the fermentation media composition and condition were optimized and trypsin activity in optimal condition reached 160.58 U/mL, which was 2.73-fold and 11.64-fold of that before optimization or before engineering. The results obtained in this study indicated that the combinational use of propeptide engineering and self-degradation sites modification might have great potential application in production of active trypsins.


Assuntos
Anti-Infecciosos , Saccharomycetales , Animais , Bovinos , Pichia/genética , Tripsina/metabolismo , Saccharomycetales/metabolismo , Penicilinas/metabolismo , Anti-Infecciosos/metabolismo
15.
Chem Biodivers ; 21(2): e202301366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073179

RESUMO

The interaction mechanism between trypsin and fulvic acid was analyzed by multispectral method and molecular docking simulation. The fluorescence spectra showed that fulvic acid induced static quenching of trypsin. The validity of this conclusion was further substantiated through the computation of the binding constants. The thermodynamic parameters show that the reaction is mainly controlled by van der Waals force and hydrogen bond force, and the reaction is spontaneous. In addition, based on the obtained binding distance, there may be a non-radiative energy transfer between the two. The ultraviolet spectrum showed that fulvic acid could shift the absorption peak of trypsin, indicating that fulvic acid had an effect on the secondary structure of trypsin. According to the synchronous fluorescence spectrum results, fulvic acid primarily interacts with tryptophan residues in trypsin and induces alterations in their microenvironment. Three-dimensional fluorescence spectrum and circular dichroism further proves this conclusion. The molecular docking simulation reveals that the interaction between the two groups primarily arises from hydrogen bonding and van der Waals forces. The findings suggest that FA has the ability to induce conformational changes in trypsin's secondary structure.


Assuntos
Benzopiranos , Simulação de Acoplamento Molecular , Tripsina/química , Tripsina/metabolismo , Ligação Proteica , Dicroísmo Circular , Termodinâmica , Espectrometria de Fluorescência , Sítios de Ligação , Ligação de Hidrogênio
16.
J Sci Food Agric ; 104(2): 905-915, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37699084

RESUMO

BACKGROUND: The aim of this study was to investigate the effects of covalent and non-covalent interactions between myofibrillar protein (MP) and cyanidin-3-O-glucoside (C3G) on protein structure, binding sites, and digestion properties. Four methods of inducing covalent cross-linking were used in the preparation of MP-C3G conjugates, including tyrosinase-catalyzed oxidation, alkaline pH shift treatment, free radical grafting, and ultrasonic treatment. A comparison was made between MP-C3G conjugates and complexes, and the analysis included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), C3G binding ratio, liquid chromatography-tandem mass spectrometry (LC-MS/MS), protein side-chain amino acids, circular dichroism spectroscopy, three-dimensional fluorescence, particle size, and in vitro simulated digestion. RESULTS: Covalent bonding between C3G and amino acid side chains in MP was confirmed by LC-MS/MS. In covalent bonding, tryptophan residues, free amino groups and sulfhydryl groups were all implicated. Among the 22 peptides covalently modified by C3G, 30 modification sites were identified, located in lysine, histidine, tryptophan, arginine and cysteine. In vitro simulated digestion experiments showed that the addition of C3G significantly reduced the digestibility of MP, with the covalent conjugate showing lower digestibility than the non-covalent conjugate. Moreover, the digestibility of protein decreased more during intestinal digestion, possibly because covalent cross-linking of C3G and MP further inhibited trypsin targeting sites (lysine and arginine). CONCLUSION: Covalent cross-linking of C3G with myofibrillar proteins significantly affected protein structure and reduced protein digestibility by occupying more trypsin binding sites. © 2023 Society of Chemical Industry.


Assuntos
Lisina , Triptofano , Cromatografia Líquida , Tripsina/metabolismo , Espectrometria de Massas em Tandem , Sítios de Ligação , Antocianinas/química , Glucosídeos/metabolismo , Digestão , Arginina
17.
J Thromb Haemost ; 22(4): 1009-1015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160728

RESUMO

BACKGROUND: The residue at the site of activation of protein C is Arg in all species except the ray-finned fish, where it is Trp. This feature raises the question of whether thrombin is the physiological activator of protein C across vertebrates. OBJECTIVES: To establish if thrombin can cleave at Trp residues. METHODS: The activity of wild-type thrombin and mutant D189S was tested with a library of chromogenic substrates and toward wild-type protein C and mutants carrying substitutions at the site of cleavage. RESULTS: Thrombin has trypsin-like and chymotrypsin-like specificity and cleaves substrates at Arg or Trp residues. Cleavage at Arg is preferred, but cleavage at Trp is significant and comparable with that of chymotrypsin. The D189S mutant of thrombin has broad specificity and cleaves at basic and aromatic residues without significant preference. Thrombin also cleaves natural substrates at Arg or Trp residues, showing activity toward protein C across vertebrates, including the ray-finned fish. The rate of activation of protein C in the ray-finned fish is affected by the sequence preceding Trp at the scissile bond. CONCLUSION: The results provide a possible solution for the paradoxical presence of a Trp residue at the site of cleavage of protein C in ray-finned fish and support thrombin as the physiological activator of protein C in all vertebrates. The dual trypsin-like and chymotrypsin-like specificity of thrombin suggests that the spectrum of physiological substrates of this enzyme is broader currently assumed.


Assuntos
Quimotripsina , Trombina , Animais , Tripsina/química , Tripsina/metabolismo , Trombina/metabolismo , Quimotripsina/química , Quimotripsina/metabolismo , Proteína C/metabolismo , Especificidade por Substrato , Cinética , Sítios de Ligação
18.
Differentiation ; 135: 100744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38128465

RESUMO

Differentiation of human umbilical cord mesenchymal stem cells (Uc-MSCs) into islet-like clusters which are capable of synthesizing and secreting insulin can potentially serve as donors for islet transplantation in the patient deficiency in islet ß cell function both in type 1 or type 2 diabetic patients. Therefore, we developed an easy and higher efficacy approach by trypsinazing the Uc-MSCs and followed culture in differentiation medium to induce of Uc-MSCs differentiation into islet-like clusters, and the potential mechanism that in the early stage of differentiation was also investigated by using RNA-sequencing and bioinformatics. Results show that induction efficacy was reached to 98% and TGF-ß signaling pathway may play critical role in the early stage differentiation, it was further confirmed that the retardant effect of differentiation progress either in cell morphology or in islet specific genes expression can be observed upon blocking the activation of TGF-ß signaling pathway using specific inhibitor of LY2109761 (TßRI/II kinase inhibitor). Our current study, for the first time, development a protocol for differentiation of Uc-MSCs into islet-like clusters, and revealed the importance of TGF-ß signaling pathway in the early stage of differentiation of Uc-MSCs into islet-like clusters. Our study will provide alternative approach for clinical treatment of either type I or type II diabtes mellitus with dysfunctional pancreatic islets.


Assuntos
Células Secretoras de Insulina , Células-Tronco Mesenquimais , Humanos , Insulina , Tripsina/metabolismo , Diferenciação Celular/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Cordão Umbilical
19.
Stem Cell Res Ther ; 14(1): 352, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072920

RESUMO

BACKGROUND: Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) sheets have recently attracted attention as an alternative approach to injected cell suspensions for stem cell therapy. However, cell engraftment and cytokine expression levels between hUC-MSC sheets and their cell suspensions in vivo have not yet been compared. This study compares hUC-MSC in vivo engraftment efficacy and cytokine expression for both hUC-MSC sheets and cell suspensions. METHODS: hUC-MSC sheets were prepared using temperature-responsive cell culture; two types of hUC-MSC suspensions were prepared, either by enzymatic treatment (trypsin) or by enzyme-free temperature reduction using temperature-responsive cell cultureware. hUC-MSC sheets and suspensions were transplanted subcutaneously into ICR mice through subcutaneous surgical placement and intravenous injection, respectively. hUC-MSC sheet engraftment after subcutaneous surgical transplantation was investigated by in vivo imaging while intravenously injected cell suspensions were analyzing using in vitro organ imaging. Cytokine levels in both transplant site tissues and blood were quantified by enzyme-linked immunosorbent assay. RESULTS: After subcutaneous transplant, hUC-MSC sheets exhibited longer engraftment duration than hUC-MSC suspensions. This was attributed to extracellular matrix (ECM) and cell-cell junctions retained in sheets but enzymatically altered in suspensions. hUC-MSC suspensions harvested using enzyme-free temperature reduction exhibited relatively long engraftment duration after intravenous injection compared to suspensions prepared using trypsin, as enzyme-free harvest preserved cellular ECM. High HGF and TGF-ß1 levels were observed in sheet-transplanted sites compared to hUC-MSC suspension sites. However, no differences in human cytokine levels in murine blood were detected, indicating that hUC-MSC sheets might exert local paracrine rather than endocrine effects. CONCLUSIONS: hUC-MSC sheet transplantation could be a more effective cell therapeutic approach due to enhanced engraftment and secretion of therapeutic cytokines over injected hUC-MSC suspensions.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Tripsina/metabolismo , Camundongos Endogâmicos ICR , Células-Tronco Mesenquimais/metabolismo , Citocinas/metabolismo , Cordão Umbilical
20.
Bull Exp Biol Med ; 175(5): 608-611, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37861909

RESUMO

Trypsin is mainly regarded as a digestive enzyme, but there is evidence that activation of protease-activated receptor-2 (PAR-2) leads to behavioral changes. There are no data on trypsin activity in the serum of animals under conditions of thirst and starvation in the available literature. In our experiments, water deprivation led to a significant (p⩽0.05) increase in trypsin activity in rats, and food deprivation led to its decrease in comparison with controls (free access to water and food). After deprived rats received water and food, a decrease in trypsin activity was observed in both experimental groups. Changes in trypsin activity under conditions of water or food deprivation and after satiation were accompanied by shifts in some biochemical parameters of the bloods. Under conditions of metabolic stress (starvation and thirst), opposite changes in trypsin activity seem to indicate its participation in the mechanisms of adequate restructuring of metabolism and maintenance of vital processes in the body.


Assuntos
Privação de Alimentos , Água , Ratos , Animais , Tripsina/metabolismo , Peptídeo Hidrolases , Sede
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...